
Daniel Drilea, Proview – Modbus RTU – free tutorial

Modbus RTU Proview 4.8 tutorial. PLEASE EXCUSE MY ENGLISH !!!

What do I use??

1. Converter USB to RS232 settings:

In Ubuntu
Serial COM1 → /dev/ttyUSB0
Serial COM2 → /dev/ttyUSB1

VirtualBox → Debian

1

Laptop 4Gb Ram

Ubuntu 10.04 LTS

VirtualBox

Debian 32bit,
Proview 4.8

Windows Xp 32bit,
Virtual Serial Port

Emulator 0.936.4.687
(www.eterlogic.com),

MOD_RsSim 8.20
(www.plcsimulator.org)

USB
to

RS232
Null-Modem
Cable

http://www.eterlogic.com/

Daniel Drilea, Proview – Modbus RTU – free tutorial

Debian → /dev/ttyS0

VirtualBox → Windows XP

Windows XP → COM1

Windows XP → Emulare COM1

2

Daniel Drilea, Proview – Modbus RTU – free tutorial

2. Proiect Proview

Create and then open the project for testing Modbus RTU:

Requirements project (the project are real data)
I want to read seven words, starting with the address 3202 (0x0C82, {43203 - modbus}) of the three
converters ATV71-type (Schneider-Electric), using Modbus RTU serial protocol.

Now, let's see the project. First, please study the tutorial from the following link:
http://www.proview.se/index.php?
option=com_joomlaboard&Itemid=24&func=view&id=268&catid=3#268
and chapter 12.2.6 from designer's guide manual.

3

Proview
ATV71

1

ATV71

2

ATV71

3

Converter
RS232 -RS485

XGS Z24

rs232 rs485

http://www.proview.se/index.php?option=com_joomlaboard&Itemid=24&func=view&id=268&catid=3#268
http://www.proview.se/index.php?option=com_joomlaboard&Itemid=24&func=view&id=268&catid=3#268

Daniel Drilea, Proview – Modbus RTU – free tutorial

Proview
How to configure Modbus RTU:

– Place a RemoteConfig in the node-hierarchy;

– Below the RemoteConfig-object you place a RemnodeModbus object for each communication link you

will have in your system. Configure serial port as shown below;

– Below the RemnodeModbus-object you place a RemTrans-object;
SENDING → mbTx {Address[0] = 1 (slave-address), Address[1] = 3 (modbus function code)}

4

Daniel Drilea, Proview – Modbus RTU – free tutorial

RECEIVING → mbRx {Address[0] = 1 (slave-address), Address[1] = 3 (modbus function
code)}

Please note that mbTx → Address[0] and mbRx → Address[0] must coincide. Same mbTx →
Address[1] and mbRx → Address[1] !

– The Buffers-objects are the data area for the message. Place a Buff256-object for each RemTrans-
object.

Settings for RemTrans items:
mbTx1 → Address[0] = 1, Address[1] = 3, Direction = Send, DataLenght = 4;
mbRx1 → Address[0] = 1, Address[1] = 3, Direction = Receive, DataLenght = 10;
mbTx2 → Address[0] = 2, Address[1] = 3, Direction = Send, DataLenght = 4;
mbRx2 → Address[0] = 2, Address[1] = 3, Direction = Receive, DataLenght = 10;
mbTx3 → Address[0] = 3, Address[1] = 3, Direction = Send, DataLenght = 4;
mbRx3 → Address[0] = 3, Address[1] = 3, Direction = Receive, DataLenght = 10.

I notice that the DataLenght item for “Direction = Receive”, can be set to any value !

Now that we have established communication parameters, let's have a look on the project variables.

Project hierarchy:

5

Daniel Drilea, Proview – Modbus RTU – free tutorial

Send → stAddr (the Data Address of the first register requested) → InitialValue = 3202;
→ noOfAddrs (the total number of registers requested) → InitialValue = 7.

Receive → rx(1..7)_(1..3)

6

Daniel Drilea, Proview – Modbus RTU – free tutorial

Control communication → send, occ, err.

PLCRxTx → plc program.

First, let's see how the protocol works:

1. Send (mbTx) :

01 03 0C 82 00 07 A7 70

Address[0]
(slave-address)

Address[1]
(modbus function code)

stAddr
(the Data Address of the first

register requested)

noOfAddrs
(the total number of
registers requested)

CRC

We need to create a data structure for the send messages. That will be defined in the file ra_plc_user.h
in $pwrp_inc-directory. This file is automatically included when you compile the plc-code.

7

Daniel Drilea, Proview – Modbus RTU – free tutorial

The plc code

RemTransSend must have a subwindow. The send-buffer for the message to send is connected to a
DataArithm.

In the end , I created a XttGraph to test the serial communication.

8

Attribute → SendDv1

Attribute → occDv1

Attribute → errDv1

Attribute → rx1_1

Attribute → rx2_1

Attribute → rx3_1

Attribute → rx4_1

Attribute → rx5_1

Attribute → rx6_1

Attribute → rx7_1

pwr_valueinputmedium

pwr_buttonset

pwr_indround

Daniel Drilea, Proview – Modbus RTU – free tutorial

Now let's see what Proview send to the slaves.

01 03 82 0C 07 00 AF 81

Address[0]
(slave-address)

Address[1]
(modbus function code)

stAddr
(the Data Address of the first

register requested)

noOfAddrs
(the total number of
registers requested)

CRC

Not good at all!
Note though that Modbus works with Big Endian, so you need to byte-swap.

We need to correct the plc code.
The code from DataArithm-object will be:

Now everything's fine.

2. Receive(mbRx) :

01 03 0E 00 0A 00 64 03 E8 27 10 00 32 01 F4 13 88 64 86

a b c d e f g h i j CRC

9

Daniel Drilea, Proview – Modbus RTU – free tutorial

a- the slave address;
b- the function code;
c- the number of data bytes to follow (7 registers x 2 bytes each = 14 bytes);
d- the contents of register 0x0C82 (3202 in decimal, {43203 modbus});
e- the contents of register 0x0C83 (3203 in decimal, {43204 modbus});
f- the contents of register 0x0C84 (3204 in decimal, {43205 modbus});
g- the contents of register 0x0C85 (3205 in decimal, {43206 modbus});
h- the contents of register 0x0C86 (3206 in decimal, {43207 modbus});
i- the contents of register 0x0C87 (3207 in decimal, {43208 modbus});
j- the contents of register 0x0C88 (3208 in decimal, {43209 modbus});

We need to create a data structure for the receive messages. That will be defined in the file
ra_plc_user.h in $pwrp_inc-directory. This file is automatically included when you compile the plc-
code.

10

Daniel Drilea, Proview – Modbus RTU – free tutorial

The plc code:

RemTransRcv must have a subwindow. The send-buffer for the message to send is connected to a
DataArithm.

After I compile the application and test the communication, I received the following answer:

01 03 00 0E 00 0A 03 64 27 E8 00 10 01 32 13 F4 00 88

1 3 14 10 868 10216 16 306 5108 136

a b c d e f g h i j k l m n o p q r

11

Daniel Drilea, Proview – Modbus RTU – free tutorial

Now we have two problems. The byte-swap and the “d” (the number of data bytes) which is part of
modbus protocol.

We need to correct the plc code.
The code from DataArithm-object will be:

DataA1 DataA2

classdef Da1 mbRx

unsigned int rx1;
unsigned int rx2;
unsigned int rx3;
unsigned int rx4;
unsigned int rx5;
unsigned int msb;
unsigned int lsb;

rx1=Da1->rx1;
rx2=Da1->rx2;
rx3=Da1->rx3;
rx4=Da1->rx4;
rx5=Da1->rx5;

msb=rx1 & 0xff00;
lsb=rx2 & 0x00ff;
OI1=msb+lsb;

msb=rx2 & 0xff00;
lsb=rx3 & 0x00ff;
OI2=msb+lsb;

msb=rx3 & 0xff00;
lsb=rx4 & 0x00ff;
OI3=msb+lsb;

msb=rx4 & 0xff00;
lsb=rx5 & 0x00ff;
OI4=msb+lsb;

classdef Da1 mbRx

unsigned int rx5;
unsigned int rx6;
unsigned int rx7;
unsigned int rx8;
unsigned int msb;
unsigned int lsb;

rx5=Da1->rx5;
rx6=Da1->rx6;
rx7=Da1->rx7;
rx8=Da1->rx8;

msb=rx5 & 0xff00;
lsb=rx6 & 0x00ff;
OI1=msb+lsb;

msb=rx6 & 0xff00;
lsb=rx7 & 0x00ff;
OI2=msb+lsb;

msb=rx7 & 0xff00;
lsb=rx8 & 0x00ff;
OI3=msb+lsb;

12

Daniel Drilea, Proview – Modbus RTU – free tutorial

Finally, we will write code for the three inverters and we will see the result.

13

Daniel Drilea, Proview – Modbus RTU – free tutorial

Everything works great.
Hope you enjoy this tutorial.

Daniel - 2011

14

